تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,886 |
تعداد دریافت فایل اصل مقاله | 97,221,726 |
ارائه روابط تجربی برای تخمین ضریب زبری مانینگ در فازهای مختلف آبیاری جویچهای | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 7، مهر 1403، صفحه 1079-1094 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.375555.669696 | ||
نویسندگان | ||
هادی رضایی راد؛ حامد ابراهیمیان* ؛ عبدالمجید لیاقت | ||
گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
این تحقیق با هدف تخمین ضریب زبری مانینگ در فازها و رخدادهای مختلف آبیاری با استفاده از روابط تجربی انجام شد. بدین منظور شش مقدار دبی ورودی در دو دسته دبی کم و زیاد، سه رخداد آبیاری متوالی، فازهای پیشروی و ذخیره، دو دور آبیاری و دو نوع بافت خاک مورد بررسی قرار گرفت. در ادامه همبستگی بین زبری و این پارامترها با استفاده از آزمونهای آماری پیرسون و کندال بررسی شد. سپس با استفاده از نتایج آن، روابطی رگرسیونی برای تخمین زبری در فازهای مختلف آبیاری توسعه یافت. نتایج نشان داد که زمان پیشروی و اندازه کلوخهها قبل از آبیاری همبستگی زیاد و شیب، رطوبت و اندازه کلوخههای پس از آبیاری همبستگی پایین با دادههای زبری مانینگ در کل رخداد آبیاری داشتند. زبری فاز پیشروی هم بیشترین همبستگی را با زمان پیشروی داشت. بیشترین و کمترین ضریب همبستگی بین پارامترها و ضریب زبری فاز ذخیره مربوط به زمان پیشروی و دبی ورودی با مقدار 65/0 و 31/0- بود که نشان از همبستگی بالا و ارتباط مستقیم زمان پیشروی و همبستگی ضعیف و رابطه معکوس دبی و زبری در این حالت داشت. میانگین مقادیر شاخصهای R2، RMSE و NRMSE در روابط ارائهشده به ترتیب 87/0، 014/0 و 97/26 درصد بود که نشان از دقت مناسب این روابط داشت. در نهایت پیشنهاد شد تا تحقیقات مشابهی در شرایط متفاوت مزرعهای و هیدرولیکی انجام شود تا روابط ارائهشده جامعیت بیشتری یابند و قابل توصیه در مزارع دیگر باشند چراکه توسعه چنین روابطی میتواند به افزایش سرعت تخمین زبری در فازهای مختلف و سهولت استفاده از آن کمک نمایند. | ||
کلیدواژهها | ||
« ضریب زبری مانینگ»؛ «فاز پیشروی»؛ «فاز ذخیره»؛ « WinSRFR»؛ «SIPAR_ID» | ||
عنوان مقاله [English] | ||
Presenting empirical equations for estimating Manning roughness coefficient in furrow irrigation in different irrigation phases | ||
نویسندگان [English] | ||
Hadi Rezaei rad؛ Hamed Ebrahimian؛ Abdolmajid Liaghat | ||
Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
This study aimed to estimation of the Manning roughness coefficient (n) in different phases and events of irrigation using empirical relations. For this purpose, six inflow rates in two flow categories, low and high, three consecutive irrigation events, advance and storage phases, two irrigation intervals and two types of soil texture were investigated. Next, the correlation between roughness and these parameters was investigated using Pearson and Kendall statistical tests. Then, using its results, regression equations were developed to estimate Manning’s n in different irrigation phases. The results indicated that the advance time and the size of clods before irrigation had a high correlation and the slope, initial soil moisture and the size of clods after irrigation had a low correlation with the Manning’s n data in the whole irrigation event. The roughness coefficient of the advance phase also had the highest correlation with the advance time. The highest and lowest correlation coefficients between the parameters and roughness coefficient of the storage phase were related to advance time and inflow rate with values of 0.65 and -0.31, respectively, which shows high correlation and direct relationship between advance time and roughness and weak correlation and inverse relationship between flow rate and roughness. The average values of R2, RMSE, and NRMSE indices in the provided relationships were 0.87, 0.014, and 26.97%, respectively, which indicated the appropriate accuracy of these relationships. Finally, it was suggested to conduct similar studies in different field and hydraulic conditions so that the presented relations are more comprehensive and can be recommended in other fields since the development of such relations can increase the speed of roughness estimation in different phases and the ease of using it. | ||
کلیدواژهها [English] | ||
"Manning roughness coefficient", "advance phase", "storage phase", "WinSRFR, " "SIPAR_ID" | ||
مراجع | ||
Abbasi, F. (2012) Principles of flow in surface irrigation. National Irrigation and Drainage Committee (in Persian). Abbasi, Fariborz and Ebrahimian, Hamed. (1402). Surface irrigation hydraulics. University publications Center (in Persian). Adamala, S., Raghuwanshi, N. S., & Mishra, A. (2014). Development of Surface Irrigation Systems Design and Evaluation Software (SIDES). Computers and Electronics in Agriculture, 100, 100–109. https://doi.org/10.1016/j.compag.2013.11.004 Amiri, M. J., Bahrami, M., Hamidifar, H., & Eslamian, S. (2016). Modification of furrow Manning’s roughness coefficient estimation by finite difference technique under surge and continuous flow. International Journal of Hydrology Science and Technology, 6(3), 226. https://doi.org/10.1504/IJHST.2016.077390 Arjamand, M., Farmani Kharajo, F., Rezaei, M., Razavifar, R. and Kazemi Mutal, A. (2017). Sensitivity analysis of Manning equation parameters of open hydraulic channels using differential equations. Elite Journal of Engineering Sciences, 3(3), 107-111 (in Persian). Baradaran, R. (2010). Investigating the effect of land preparation operations on soil hydrodynamic coefficient in furrow irrigation. Shahid Chamran University of Ahwaz (in Persian). Bautista, E., Clemmens, A. J., & Strelkoff, T. S. (2009). Structured Application of the Two-Point Method for the Estimation of Infiltration Parameters in Surface Irrigation. Journal of Irrigation and Drainage Engineering, 135(5), 566–578. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000054 Bautista, E., Clemmens, A. J., Strelkoff, T. S., & Schlegel, J. (2009). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96(7), 1146–1154. https://doi.org/10.1016/j.agwat.2009.03.007 Behzad Izadi, & W. W. Wallender. (1985). Furrow Hydraulic Characteristics and Infiltration. Transactions of the ASAE, 28(6), 1901–1908. https://doi.org/10.13031/2013.32539 Burguete, J., Lacasta, A., & García-Navarro, P. (2014). SURCOS: A software tool to simulate irrigation and fertigation in isolated furrows and furrow networks. Computers and Electronics in Agriculture, 103, 91–103. https://doi.org/10.1016/j.compag.2014.02.004 Clemmens, A. J. (2009). Errors in surface irrigation evaluation from incorrect model assumptions. Journal of Irrigation and Drainage Engineering, 135(5), 556–565. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000059 Clemmens, A. J., Eisenhauer, D. E., & Maheshwari, B. L. (2001). Infiltration and Roughness Equations for Surface Irrigation: How Form Influences Estimation. An ASAE Meeting Presentation No. 01-2255, 0300(xx), 1–19. Dewedar, O. M., Mehanna, H. M., & El-shafie, A. F. (2019). Validation of WinSRFR for some hydraulic parameters of furrow irrigation in Egypt. Plant Archives, 19(2), 2108–2115. Ebrahimian, H. (2014). Soil infiltration characteristics in alternate and conventional furrow irrigation using different estimation methods. KSCE Journal of Civil Engineering, 18(6), 1904–1911. https://doi.org/10.1007/s12205-014-1343-z Enciso-Medina, J., Martin, D., & Eisenhauer, D. (1998). Infiltration Model for Furrow Irrigation. Journal of Irrigation and Drainage Engineering, 124(2), 73–80. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:2(73) Esfandiari, M., & Maheshwari, B. L. (1998). Suitability of Selected Flow Equations and Variation of Manning’s n in Furrow Irrigation. Journal of Irrigation and Drainage Engineering, 124(2), 89–95. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:2(89) Etedali, H. R., Ebrahimian, H., Abbasi, F., & Liaghat, A. (2011). Evaluating models for the estimation of furrow irrigation. 9(2), 641–649. Gill, M. A. (1976). EXACT SOLUTION OF GRADUALLY VARIED FLOW. Journal of the Hydraulics Division, 102(9), 1353–1364. https://doi.org/10.1061/JYCEAJ.0004617/REFERENCES Gillies, M. H., & Smith, R. J. (2015). SISCO: surface irrigation simulation, calibration and optimisation. Irrigation Science, 33(5), 339–355. https://doi.org/10.1007/s00271-015-0470-8 GiMey, J. E., Kottwitz, E. R., & Wieman, G. a. (1991). Roughness Coefficients for Selected Residue Materials. Journal of Irrigation and Drainage Engineering, 117(4), 503–514. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:4(503) Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350. https://doi.org/10.1016/0378-4290(91)90040-3 Jurriens, M., Zerihun, D., Boonstra, J., & Feyen, J. (2001). SURDEV: Surface Irrigation Software. Design, Operation, and Evaluation of Basin, Border, and Furrow Irrigation. International Institute for Land Reclamation and Improvement. Kamali, P., Ebrahimian, H., & Parsinejad, M. (2018). Estimation of Manning roughness coefficient for vegetated furrows. Irrigation Science, 36(6), 339–348. https://doi.org/10.1007/s00271-018-0593-9 Kassem, M. A., & Ghonimy, M. I. (2011). Determination of manning roughness coefficient for border irrigation system. 28(April), 302–323. Katopodes, N. D., Tang, J., & Clemmens, A. J. (1990). Estimation of Surface Irrigation Parameters. Journal of Irrigation and Drainage Engineering, 116(5), 676–696. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:5(676) Li, Z., & Zhang, J. (2001). Calculation of Field Manning’ s Roughness Coefficient. Agricultural Water Management, 49, 153–161. Maheshwari, B. L. (1992). Suitability of different flow equations and hydraulic resistance parameters for flows in surface irrigation: A review. Water Resources Research, 28(8), 2059–2066. https://doi.org/10.1029/92WR00424 Maheshwari, B. L., & McMahon, T. A. (1992). Modeling Shallow Overland Flow in Surface Irrigation. Journal of Irrigation and Drainage Engineering, 118(2), 201–217. Mailapalli, D. R., Raghuwanshi, N. S., Singh, R., Schmitz, G. H., & Lennartz, F. (2008). Spatial and Temporal Variation of Manning’s Roughness Coefficient in Furrow Irrigation. Journal of Irrigation and Drainage Engineering, 134(2), 185–192. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(185) Mazarei, R., Soltani Mohammadi, A., Ebrahimian, H., & Naseri, A. A. (2021). Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates. Agricultural Water Management, 245, 106465. https://doi.org/10.1016/j.agwat.2020.106465 Mehri, A., Mohammadi, A. S., Ebrahimian, H., & Boroomandnasab, S. (2023). Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software. Agricultural Water Management, 276, 108052. https://doi.org/10.1016/j.agwat.2022.108052 Mwendera, E. J., & Feyen, J. (1992). Estimation of depression storage and Manning’s resistance coefficient from random roughness measurements. Geoderma, 52(3–4), 235–250. https://doi.org/10.1016/0016-7061(92)90039-A Nematollahi, B., & Abedini, M. J. (2020). Analytical Solution of Gradually Varied Flow Equation in Non-prismatic Channels. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 44(1), 251–258. https://doi.org/10.1007/s40996-019-00316-5 Nie, W. B., Fei, L. J., & Ma, X. Y. (2014a). Applied closed-end furrow irrigation optimized design based on field and simulated advance data. Journal of Agricultural Science and Technology, 16(2), 395–408. Nie, W. B., Fei, L. J., & Ma, X. Y. (2014b). Applied closed-end furrow irrigation optimized design based on field and simulated advance data. Journal of Agricultural Science and Technology, 16(2), 395–408. Nie, W.-B., Li, Y.-B., Zhang, F., Dong, S.-X., Wang, H., & Ma, X.-Y. (2018). A Method for Determining the Discharge of Closed-End Furrow Irrigation Based on the Representative Value of Manning’s Roughness and Field Mean Infiltration Parameters Estimated Using the PTF at Regional Scale. Water, 10(12), 1825. https://doi.org/10.3390/w10121825 Pallant, J. (2010). SPSS Survival Manual. In McGraw-Hill Education (4th ed.). Pradhan, A., & Khatua, K. K. (2018). Assessment of Roughness Coefficient for Meandering Compound Channels. KSCE Journal of Civil Engineering, 22(5), 2010–2022. https://doi.org/10.1007/s12205-017-1818-9 Ramesh, A., & Ostad‑Ali‑Askari, K. (2023). Effect of effluent and magnetized effluent on Manning roughness coefficient in furrow irrigation. Applied Water Science, 13(1), 1–10. https://doi.org/10.1007/s13201-022-01818-w Ramezani Etedali, H., Ebrahimian, H., Abbasi, F., & Liaghat, A. (2011). Evaluating models for the estimation of furrow irrigation infiltration and roughness. Spanish Journal of Agricultural Research, 9(2), 641. https://doi.org/10.5424/sjar/20110902-342-10 Ramezani Etedali, H., Liaghat, A., & Abbasi, F. (2012). Evaluation of The EVALUE Model for Estimating Manning’s Roughness in Furrow Irrigation. Irrigation and Drainage, 61(3), 410–415. https://doi.org/10.1002/ird.650 Ramezani, H., Liaqat, A., and Abbasi, F. (2009). Evaluation of EVALUE model to estimate the manning roughness coefficient in furrow irrigation. Journal of Agricultural Engineering Research, 10(3), 83–94 (in Persian). Rezaei Rad, H., Ebrahimian, H., & Liaqat, A. (2021). Inverse Estimation of Manning Roughness Coefficient Using WinSRFR Model and Investigating Its Variations in Different Irrigation Events. Iranian Journal of Irrigation and Drainage, 3(15), 598-610 (in Persian). Rezaei Rad, H., Ebrahimian, H., Liaqat, A., Khalji, F., and Shabani Arani, M. (2021). Effect of inflow rate and initial soil moisture on Manning roughness coefficient in advance and storage phases in furrow irrigation. Water and Irrigation Management, 11(2), 159–172. https://doi.org/10.22059/jwim.2021.316828.852 (in Persian). Salahou, M. K., Jiao, X., & Lü, H. (2018). Border irrigation performance with distance-based cut-off. Agricultural Water Management, 201(2016), 27–37. https://doi.org/10.1016/j.agwat.2018.01.014 Sedaghatdoost, A., & Ebrahimian, H. (2015). Calibration of infiltration, roughness and longitudinal dispersivity coefficients in furrow fertigation using inverse modelling with a genetic algorithm. Biosystems Engineering, 136, 129–139. https://doi.org/10.1016/j.biosystemseng.2015.05.011 Sepaskhah, A. R., & Bondar, H. (2002). Estimation of Manning Roughness Coefficient for Bare and Vegetated Furrow Irrigation. Biosystems Engineering, 82(3), 351–357. https://doi.org/10.1006/bioe.2002.0076 Seyedzadeh, A., Panahi, A., Maroufpoor, E., & Singh, V. P. (2019). Development of an analytical method for estimating Manning’s coefficient of roughness for border irrigation. Irrigation Science, 37(4), 523–531. https://doi.org/10.1007/s00271-019-00631-9 Smith, R. J., Uddin, M. J., & Gillies, M. H. (2018). Estimating irrigation duration for high performance furrow irrigation on cracking clay soils. Agricultural Water Management, 206, 78–85. https://doi.org/10.1016/j.agwat.2018.03.014 Srivastava, R. (2003). Discussion of ‘“Integrating Equation of Gradually Varied Flow.”’ JOURNAL OF HYDRAULIC ENGINEERING, January, 77–78. Tabatabaei, S. M., & Asadi, R. (2015). Estimation of Infiltration Parameters and Manning Roughness with SIPAR_ID Software. International Journal of Life Sciences, 9(5), 70–74. Walker, W. R. (1987). surface irrigation theory and practice (1st ed.). Walker, W. R. (2003). SIRMOD III Surface Irrigation Simulation, Evaluation and Design Guide and Technical Documentation. Utah State University. Walker, W. R. (2005). Multilevel Calibration of Furrow Infiltration and Roughness. Journal of Irrigation and Drainage Engineering, 131(2), 129–136. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:2(129) Xu, J., Cai, H., Saddique, Q., Wang, X., Li, L., Ma, C., & Lu, Y. (2019). Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness. Agricultural Water Management, 214(23), 64–77. https://doi.org/10.1016/j.agwat.2019.01.003 Yousefi, K. and Banjad, H. (2012). Analyzing the sensitivity of Manning's formula to the roughness coefficient with the method of differential equations. The first national conference on the challenges of water resources and agriculture. https://civilica.com/doc/537966 (in Persian). Zarekani, K., Ramezani Mederani, H., and Daneshkar Araste, P. (2018). Estimation of infiltration parameters and Manning roughness coefficient under two continuous and cutback flows regimes. Journal of Soil and Water Resources Conservation, 9(2), 89–101 (in Persian). | ||
آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 77 |