
تعداد نشریات | 163 |
تعداد شمارهها | 6,713 |
تعداد مقالات | 72,500 |
تعداد مشاهده مقاله | 130,450,293 |
تعداد دریافت فایل اصل مقاله | 102,812,873 |
پاسخهای مورفولوژیک، فیزیولوژیک و بیوشیمیایی انگور رقم 'بیدانه قرمز' پیوندی روی هفت پایه به تنش کم آبی، جهت شناسایی متحملترین ترکیب پایه و پیوندک | ||
علوم باغبانی ایران | ||
دوره 55، شماره 4، دی 1403، صفحه 679-697 اصل مقاله (2.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.377196.2180 | ||
نویسندگان | ||
سید محمد مهدی میرفتاح1؛ موسی رسولی* 2؛ منصور غلامی3؛ عباس میرزاخانی4 | ||
1پژوهشکده انگور و کشمش دانشگاه ملایر، ملایر، ایران | ||
2گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران | ||
3موسسه آموزش عالی عمران و توسعه، همدان، ایران | ||
4بخش زراعی و باغی، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران | ||
چکیده | ||
تنش خشکی یکی از مهمترین محدودیتها در تولید محصولات کشاورزی، بهخصوص باغبانی در نقاط مختلف جهان و ایران میباشد. با توجه به تغییرات اقلیمی که در چند سال اخیر اتفاق افتاده است، میتوان با بررسی و انتخاب ارقام متحمل به تنش خشکی، تولید پایدار انگور در شرایط تنش آبی را فراهم نمود. بههمین منظور، پژوهشی در طی سالهای1400-1397 در شرایط باغ و به صورت آزمایش اسپیلت پلات بر پایه بلوک کامل تصادفی با سه تکرار برای بررسی تأثیر تغییرپذیری پتانسیل آب خاک برصفات ریخت شناختی، فیزیولوژیک و بیوشیمیایی ارقام انگور متحمل تا حساس به خشکی انجام شد. تیمارها شامل هفت رقم انتخابی انگور ('بیدانه قرمز'، 'بیدانه سفید'، 'رشه '،'ساهانی '، 'کره رویه'، 'مولایی ' و 'چفته') بهعنوان پایه، و پیوندک رقم'بیدانه قرمز' و سه سطح تنش خشکی، شامل رطوبت زراعی (شاهد)، 75 درصد (تنش متوسط) و 55 درصد (تنش شدید) تخلیه رطوبت زراعی بودند. در این تحقیق، صفات تعداد برگ، طول شاخه، سطح برگ، وزن تر و خشک برگ، تراکم روزنه، نشت یونی، میزان پایداری غشای سلولی، محتوای نسبی آب برگ، کلروفیل، کارتنوئید، پرولین، کربوهیدرات محلول، میزان مالون دی آلدئید و کاتالاز اندازه گیری شدند. نتایج نشان داد که اثر متقابل تنش خشکی و رقم بر صفات سطح برگ، محتوای نسبی آب برگ، کربوهیدرات محلول، پرولین، کلروفیل کل، کارتنویید، کاتالاز و مالون دی آلدئید مورد بررسی در سطح یک درصد معنی دار بود. همچنین، اثرات ساده تنش خشکی بر صفات تعداد برگ، طول شاخه، وزن تر برگ، تراکم روزنه، نشت یونی و پایداری غشای سلولی معنی دار بود. با تنش آبی شدیدتر، میزان پرولین و کاتالاز افزایش و میزان کلروفیل کل و پایداری غشای سلولی کاهش یافت. به طورکلی، انگور رقم 'بیدانه قرمز' پیوند شده روی پایه های 'چفته'، 'مولایی' و 'کره رویه' در اغلب صفات، پتانسیل بالاتری را از نظر تحمل به تنش خشکی در شرایط تاکستان نسبت به دیگر ترکیب های پیوندی مورد آزمایش نشان دادند. | ||
کلیدواژهها | ||
واژه های کلیدی: انگور؛ تنش خشکی؛ پایه و پیوندک؛ پرولین | ||
عنوان مقاله [English] | ||
Morphological, Physiological and Biochemical Responses of 'Bidaneh Ghermez' Grape Scion on Seven Rootstocks to Water Deficit, to Identify the Most Tolerant Rootstock and Scion Combination | ||
نویسندگان [English] | ||
Saiyed Mohammad Mahdi Mirfatah1؛ Mousa Rasouli2؛ Mansour Gholami3؛ Abbas Mirzakhani4 | ||
1Department of Grape and Raisin Research Institute, Malayer University, Malayer, Iran | ||
2Department of Horticultural Science Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran | ||
3Department University College of Omran-Toseeh, Hamedan, Iran | ||
4Department of agricultural and horticultural department, Center for Agricultural Research, Education and Natural Resources of Arak Province, Agricultural Research, Education and Extension Organization, Arak, Iran | ||
چکیده [English] | ||
Drought stress is one of the most important abiotic stresses restricting agricultural production, especially horticultural products, in different parts of the world and Iran. Regarding climate changes happened in the last few years, a sustainable production of grape is feasible in regions with drought stress using tolerant cultivars. To this end, an experiment was conducted in a split-plot design based on a randomized complete block (RCBD) with three replications during 2018-2021, at vineyard condition. At first, 'Bidaneh Ghermez' cultivar as scion were grafted on seven grape cultivars ('Bidaneh Ghermez', 'Bidaneh Sefid', 'Rashe', 'Sahani', 'Kare Royeh', 'Moulai', and 'Chafte') then grafted plants were subjected to three levels of drought, including field capacity (FC) (as control), 75% (moderate stress), and 55% (as severe stress) moisture depletion at 5-6-leaf stage. Some morphological, physiological and biochemical traits were measured after two months. The results showed that the interaction of drought × cultivar was significant in terms of leaf surface traits, RWC, soluble carbohydrates, proline, total chlorophyll, carotenoids, catalase, and MDA (p<0.01). In addition, the main effect of drought significantly influenced leaf number, branch length, leaf fresh weight, stomatal density, electrolyte leakage, and cell membrane stability. Furthermore, the result of the mean comparison showed that mounting the severity of drought level led to an increase in the amount of proline and catalase, and a reduction in the amount of total chlorophyll and cell membrane stability. In conclusion, 'Bidaneh Ghermez' cultivar grafted on the rootstocks of 'Chafte', 'Moulai' and 'Kare Royeh' had a higher potential to be used as tolerant cultivars to drought stress compared to the other grafted combinations, examined in a vast majority of the studied traits. | ||
کلیدواژهها [English] | ||
Drought stress, Grape, Proline, Scion and Rootstock | ||
مراجع | ||
منابعدولتی بانه، حامد؛ احمد آلی، جمال و رسولی، موسی (1398). تأثیر تنش خشکی بر برخی صفات مورفوفیزیولوژیکی در تعدادی از ارقام تجاری داخلی و خارجی انگور. پژوهشهای میوهکاری، 4(2)، 127-142. سروری، شیما؛ اصغرزاده، احمد؛ مرجانی، علی و صمدی کاظمی، ملیحه (1401). ارزیابی تحمل برخی از ارقام انگور نسبت به تنش خشکی با استفاده از مطالعات فیزیولوژیکی و بیوشیمیایی. علوم باغبانی، 36(2)، 373-388. doi: 10.22067/jhs.2021.67767.1004 سوخت سرایی، رضا؛ عبادی، علی؛ سلامی، سید علیرضا و لسانی، حسین (1396). بررسی شاخصهای اکسیداتیو در سه رقم انگور (Vitis vinifera L.) در شرایط تنش خشکی. نشریه علوم باغبانی ایران، 48 (1)، 85-98. doi: 10.22059/ijhs.2017.106884.592 مددی، داریوش؛ عبادی، علی؛ دولتی بانه، حامد؛ عبدوسی، وحید و حدادی نژاد، مهدی (1400). پاسخهای ریختشناسی و فیزیولوژیکی نهال پیوندی انگور بیدانه سفید روی پایه ایرانی و خارجی در شرایط تنش خشکی. نشریه علوم باغبانی ایران، 52 (2)، 367-353 doi 10.22059/ijhs.2020.260522.1463 مهری، حمیدرضا؛ قبادی، سیروس؛ بانی نسب، بهرام؛ احسان زاده، پرویز و غلامی، مهدیه (1393). بررسی برخی پاسخ های فیزیولوژیک و مورفولوژیک چهار رقم انگور ایرانی(Vitis vinifera L.) به تنش خشکی در شرایط درون شیشه ای. فرآیند و کارکرد گیاهی، 3(10)، 115-126. RERERENCES Abbaspour, N. & Babaee, L. (2017). Effect of salicylic acid application on oxidative damage and antioxidant activity of grape (Vitis vinifera L.) under drought stress condition. International Journal of Horticultural Science and Technology, 4(1), 29-50. https:doi.org. 10.22059/ijhst.2017.227384.176 Altıncı, N. T. & Cangi, R. (2019). Drought tolerance of some wine grape cultivars under in vitro conditions. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 36(2), 145-152. https: doi.org doi:10.13002/jafag4633 Aran, M., Abedi, B., Tehranifar, A. & Parsa, M. (2017). Effects of drought stress on some morphological and physiological properties of three grapevine cultivars (Vitis vinifera L.). Journal of Horticulture Science , 31(2), 315-326 https://doi.org/10.22067/jhorts4.v0i0.53495 Asadi, W., Rasouli, M., Gholami, M. & Maleki, M. (2020). Effect of some cultivars of native grapevine as rootstocks and triachenetanol on the physiology of'Bidaneh Sefid' grapevine scion (Vitis vinifera L.), under drought stress. Iranian Journal of Horticultural Science, 51(2). doi: 10.22059/ijhs.2019.269570.1539 Asadi, W., Gholami, M., Rasouli, M. & Maleki, M. (2019). Effect of drought stress on some physiological traits in three varieties of grapes (Vitis vinifera L.). Isfahan University of Technology-Journal of Crop Production and Processing, 9(3), 45-59.doi: 10.47176/jcpp.9.3.24642 Bahrani, P., Ebadi, A., Zamani, Z. & Fatahi Moghadam, M. R. (2020). Effects of Drought Stress Levels on Some Morphological and Physiological Traits to Select the Most Tolerant ones as a Rootstock. Journal of Plant Production Research, 27(1), 41-56. doi:10.22069/jopp.2020.15230.2369 Bates, L. S., Waldren, R. P. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. http://dx.doi.org/10.1007/BF00018060 Bauerle, T.L., Centinari, M. & Bauerle, W.L. (2011). Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 234(5), 1045-1054. doi10.1007/s00425-011-1460-6 Bertamini, M., Zulini, L., Muthuchelian, K. & Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44, 151-154. https://doi.org/10.1007/s11099-005-0173-0 Bhargavi, B., Kalpana, K. & Reddy, J.K. (2017). Influence of water stress on morphological and physiological changes in Andrographis paniculata. International. Journal of Pure and Applied. Bioscience, 5(6), 1550-1556. Bikdeloo, M., Colla, G., Rouphael, Y., Hassandokht, M.R., Soltani, F., Salehi, R., & Cardarelli, M. (2021). Morphological and physio-biochemical responses of watermelon grafted onto rootstocks of wild watermelon [Citrullus colocynthis (L.) Schrad] and commercial interspecific cucurbita hybrid to drought stress. Horticulturae, 7(10), 359,1-12. https://doi.org/10.3390/horticulturae7100359 Chance, B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. In Methods in Enzymology. Elsevier Science and Technology 2, 764-775. Chung, P.J., Jung, H., Choi, Y.D. & Kim, J. K. (2018). Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics, 19, 1-17. https://doi.org/10.1186/s12864-017-4367-1 Daldoul, S., Boubakri, H., Gargouri, M. & Mliki, A. (2020). Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Molecular Biology Reports, 47(4), 3141-3153. https://doi.org/10.1007/s11103-021-01122-2. Doulati Baneh, H., Ahmadaali, J. & Rasouli, M. (2019). Effects of drought stress on some morphophysiological traits of some Iranian and foreign commercial grape varieties. Pomology Research, 4(2), 127-142. (In Persian). Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A. & Maleki Lajayer, H. (2023). Impact of drought stress on morphological and physiological traits in some Iranian grape cultivars. Journal of Plant Process and Function, 11(47), 249-266. http://dorl.net/dor/20.1001.1.23222727.1401.11.47.11.0 Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A., Lajayer, H. M., Gohari, G. & Hano, C. (2022). Multivariate discrimination of some grapevine cultivars under drought stress in Iran. Horticulturae, 8(10),871. https://doi.org/10.3390/horticulturae8100871 Fanizza, G. & Ricciardi, L. (2015). Influence of drought stress on shoot, leaf growth, leaf water potential, stomatal resistance in wine grape genotypes (Vitis vinifera L.). VITIS-Journal of Grapevine Research, special issue, 29, 371-381 https://doi.org/10.5073/vitis.1990.29.special-issue.371-381 Ferlito, F., Distefano, G., Gentile, A., Allegra, M., Lakso, A. N. & Nicolosi, E. (2020). Scion–rootstock interactions influence the growth and behaviour of the grapevine root system in a heavy clay soil. Australian Journal of Grape and Wine Research, 26(1), 68-78. https://doi.org/10.1111/ajgw.12415 Flexas, J., Galmés, J., Gallé, A., Gulías, J., Pou, A., Ribas‐Carbo, M., Tomas, M. & Medrano, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. https://doi.org/10.1111/j.1755-0238.2009.00057.x Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U. & Castellarin, S.D. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658-4676. https://doi.org/10.1093/jxb/eraa245 Ghaderi, N., Talaei, A., Ebadi, A. & Lesani, H. (2010). Study of some physiological characteristics in'Sahani','Bidane-sefid'and'Farkhii'grapes during drought stress and their subsequent recovery. Iranian Journal of Horticultural Science, 41(2), 179-188. (In Persian). 20.1001.1.2008482.1389.41.2.9.5 Gullo, G., Dattola, A., Vonella, V. & Zappia, R. (2018). Evaluation of water relation parameters in Vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Journal of Plant Physiology, 226, 172-178. https://doi.org/10.1016/j.jplph.2018.04.013 Kantar, M., Lucas, S. J. & Budak, H. (2011). Drought stress: molecular genetics and genomics approaches. In Advances in botanical research, 57,445-493. Academic Press. http://dx.doi.org/10.1016/B978-0-12-387692-8.00013-8. Karami, L., Ghaderi, N. & Javadi, T. (2017). Morphological and physiological responses of grapevine (Vitis vinifera L.) to drought stress and dust pollution. Folia Horticulturae, 29(2), 231-240. 10.1515/fhort-2017-0021. Khandani, Y., Gholami, M., Sarikhani, H. & Chehregani Rad, A. (2022). Response of some vegetative and physiological traits of Iranian and foreign grape cultivars to drought stress. Journal of Plant Process and Function, 11(51), 153-174. 20.1001.1.23222727.1401.11.51.10.7.7 Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. In J.S. Helebust (ed.), Handbook of Phycological Methods, 2, 56-97. Cambridge University Press, Cambridge. Kucukbasmaci, A. & Sabir, A. (2019). Long-term impact of deficit irrigation on the physiology and growth of grapevine cv. ‘Prima’ grafted on various rootstocks. Acta Scientiarum Polonorum. Hortorum Cultus, 18(4), 57-70. doi:10.24326.asphc201946. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology, 148, 350-382. Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1. Lutts, S., Kinet, J.M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134 Madadi, D., Ebadi, A., Baneh, H. D., Abdousi, V. & Hadadinejad, M. (2021). Morphological and physiological responses of grafted Sultana grapevine on Iranian and American rootstocks to drought stress. Iranian Journal of Horticultural Science, 52(2), 353-367. https://doi.org/10.22059/ijhs.2020.260522.1463.(In Persian). Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C. & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist, 194(2), 416-429. https://doi.org/10.1111/j.1469-8137.2012.04059. Marín Ederra, D., Armengol, J., Carbonell-Bejerano, P., Escalona, J. M., Gramaje, D., Hernández- Montes, E. & Herralde, F.D. (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research 27, 8–25. https: https://doi.org/10.1111/j.1469-8137.2012.04059.x.ajgw.12463. Mehri, H., Ghobadi, C., Baninasab, B. & Ehsanzadeh, P. (2015). Evaluation of some physiological and morphological responses of four Iranian grapevine (Vitis vinifera L.) cultivars to drought stress under in vitro conditions. Journal of Plant Process and Function, 3(10), 115-126. (In Persian). Molassiotis, A., Job, D., Ziogas, V. & Tanou, G. (2016). Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Frontiers in Plant Science, 7,183021. https://doi.org/10.3389/fpls.2016.00229. Paranychianakis, N.V., Chartzoulakis, K.S. & Angelakis, A.N. (2004). Influence of rootstock, irrigation level and recycled water on water relations and leaf gas exchange of Soultanina grapevines. Environmental and Experimental Botany, 52(2), 185-198. https: doi.org.10.1016.j.envexpbot.2004.02.002 Pellegrino, A., Lebon, E., Simonneau, T. & Wery, J. (2005). Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Australian Journal of Grape and Wine Research, 11(3), 306-315. https://doi.org/10.1111/j.1755-0238.2005.tb00030.x Pinheiro, C. & Chaves, M.M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882. https://doi.org/10.1093/jxb/erq340. Prinsi, B., Negri, A.S., Failla, O., Scienza, A. & Espen, L. (2018). Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks. BMC Plant Biology, 18,1-28. https://doi.org/10.1186/s12870-018-1343-0. Prinsi, B., Simeoni, F., Galbiati, M., Meggio, F., Tonelli, C., Scienza, A. & Espen, L. (2021). Grapevine rootstocks differently affect physiological and molecular responses of the scion under water deficit condition. Agronomy, 11(2),289. https://doi.org/10.3390/agronomy11020289. Rahmani, H., Rasoli, V., Abdossi, V. & Ghanbari Jahromi, M. (2023). Ch1 (Vitis vinifera L.) rootstock control of scion response to water stress in some commercial grapevine cultivars. South African Journal of Enology and Viticulture, 44(1), 1-8. https://doi.org/10.21548/44-1-5325. Romero, P., Gil-Muñoz, R., del Amor, F.M., Valdés, E., Fernández, J.I., & Martinez-Cutillas, A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management, 121, 85-101. https://econpapers.repec.org/scripts/redir.pf?u=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.agwat.2013.01.007;h=repec:eee:agiwat:v:121:y:2013:i:c:p:85-101. Sahitya, U. L., Krishna, M. S. R., Deepthi, R. S., Prasad, G. S., & Kasim, D. P. (2018). Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L) seedlings. BioMed Research International, 2018(1), 1605096. 10.1155/2018/1605096. PMID: 29888251; PMCID: PMC5977015. Siddique, Z., Jan, S., Imadi, S. R., Gul, A., & Ahmad, P. (2016). Drought stress and photosynthesis in plants. Water stress and crop plants: a sustainable approach, 1, 1-11. https:doi.org.10.1002.9781119054450.ch1. Fatemi, A., Safari, A., Saeidi, M., & Kolahchi, Z. (2023). Effect of Some Inorganic and Organic Fertilizers’ Application and Drought Stress on Superoxide Dismutase and Peroxidase Activities and Total Soluble Protein of Bidane-Ghermez Grapevines. Journal Of Horticultural Science, 37(2), 325-336.https://doi.org/10.22067/jhs.2023.73313.1102. Singh, S. K., Sharma, H. C., Goswami, A. M., Datta, S. P., & Singh, S. P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia plantarum, 43, 283-286.https://doi.org/10.1023/A:1002720714781. Sivritepe, N., Yerlikaya, C., Türkan, I., Bor, M., & Özdemir, F. A. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia plantarum 52:573-576. https://doi.org/10.1007/s10535-008-0114-4. Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current opinion in biotechnology, 21(2), 197-203. https://doi.org/10.1016/j.copbio.2010.03.002. Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2005). Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Functional Plant Biology, 32(1), 45-53.https://doi.org/10.1071/fp04003. Sorori, S., Asgharzade, A., Marjani, A., & Samadi, M. (2022). Evaluation of drought stress tolerance among some of grape cultivars using physiological and biochemical studies. Journal of Horticultural Science, 36(2), 373-388. https://doi.org/10.22059/ijhs.2017.236292.1276 (In Persian). Srivastava, S., & Srivastava, M. (2014). Morphological changes and antioxidant activity of Stevia rebaudiana under water stress. American Journal of Plant Sciences, 5(22), 3417.http://dx.doi.org/10.4236/ajps.2014.522357 Soukhtesaraee, R., Ebadi, A., Salami, S. A. and Lesani, H. (2017). Evaluation of oxidative parameters in three grapevine cultivars under drought stress. Iranian Journal of Horticultural Science, 48(1), 85-98. https://doi.org/10.22067/jhs.2021.61898.0. (In Persian). Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg 2+-induced oxidative stress in a tolerant rice mutant. Archives of environmental contamination and toxicology, 56, 723-731. https://doi.org/10.1007/s00244-008-9226-2. Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Emanuelli, D. (2014). Rootstock type determines tolerance of C hardonnay and S hiraz to long‐term saline irrigation. Australian Journal of Grape and Wine Research, 20(3), 496-506. https://doi.org/10.1111/ajgw.12094. Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J., & Miller, A. J. (2016). Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in plant science, 21(5), 418-437. https://doi.org/10.1016/j.tplants.2015.11.008 | ||
آمار تعداد مشاهده مقاله: 172 تعداد دریافت فایل اصل مقاله: 51 |